3rd Grade Power Standards

Power Standard 1

 I can understand multiplication by thinking about groups of objects.
 (3.0A.1)

Power Standard 2

- □ I can understand and label fractions on a number line because I know the space between any two numbers on the number line can be thought of as a whole. (3.NF.2a)
- □ I can show a fraction on a number line by marking off equal parts between two whole numbers. (3.NF.2b)

Power Standard 3

□ I can use strategies to add and subtract numbers within 1,000. (3.NBT.2)

Power Standard 4

- □ I can compare two fractions with the same numerator or the same denominator using the symbols >, =, or <. (3.NF.3d)
- □ I can explain my answers by using visual fraction models. (3.NF.3d)

Power Standard 5

□ I can explain division (quotients) of whole numbers. For example, interpret 56 ÷ 8 as the number of objects in each share when 56 objects are divided equally into eight shares. (3.0A.2)

Power Standard 6

□ I can determine when to multiply and divide in word problems within 100 using equal groups, arrays and measurement quantities using drawings and equations with unknowns in all positions. (3.0A.3)

Power Standard 7

- □ I can use properties of operations as strategies to multiply and divide. (3.0A.5)
- □ I can use the Commutative property of multiplication (e.g. I know that if 6 x 4 = 24, then 4 x 6 = 24). (3.0A.5)
- □ I can use the Associative property of multiplication (e.g. to figure out 3 x 5 x 2, I can multiply 3 x 5 = 15, then 15 x 2 = 30, or multiply 5 x 2 = 10, then 3 x 10 = 30). (3.0A.5)
- □ I can use the Distributive property (e.g. to figure out 8 x 7, I can think of 8 x (5 + 2) which means (8 x 5) + (8 x 2) = 40 + 16 = 56. (3.0A.5)

Power Standard 8

□ I can multiply and divide within 100 easily and quickly because I know that multiplication and division are related. (3.0A.7)

Power Standard 9

- □ I can solve two-step word problems that involve addition, subtraction, multiplication, and division. (3.0A.8a)
- □ I can solve two-step word problems by writing an equation with a letter in place of the number I don't know. (3.0A.8b)
- □ I can use mental math to figure out if the answers to two-step word problems are reasonable. (3.0A.8c)

Power Standard 10

- □ I can write equations with a letter standing for the unknown number in a two-step problem. (3.0A 8b)
- \Box I can write an equation for a word problem. (3.0A 8b)

Power Standard 11

- □ I can understand that a unit fraction has a numerator of one and a non-zero denominator. (3.NF.1)
- □ I can understand that a fraction 1/b is formed by one part when a whole is partitioned into b equal parts. (3.NF.1)
- □ I can understand a fraction a/b is formed by a part of size 1/b. For example: 1/4 + 1/4 + 1/4 = 3/4. (3.NF.1)

Power Standard 12

- □ I can find the area of a rectangle using square tiles and also by multiplying the two side lengths. (3.MD.7a)
- I can solve real world problems about area using multiplication.
 (3.MD.7b)

Power Standard 13

- □ I can use models to show that the area of a rectangle can be found by using the Distributive property (e.g. side lengths and b + c is the sum of a x b and a x c). (3.MD.7c)
- □ I can find the area of a shape by breaking it down into smaller shapes and then adding those areas to find the total area. (3.MD.7d)

Power Standard 14

- □ I can measure liquids and solids with grams (g), kilograms (kg) and liters (I). (3.MD.2)
- □ I can use addition, subtraction, multiplication, and division to solve word problems involving mass and volume. (3.MD.2)

Power Standard 15

- □ I can draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. (3.MD.3)
- □ I can solve one and two step "how many more" and "how many less" problems using information from scaled bar graphs. (3.MD.3)